ows-master/examengegevens template generator/script.py

113 lines
4.9 KiB
Python
Raw Permalink Normal View History

2024-11-18 10:59:21 +00:00
import pandas as pd
def read_excel_file(file_path):
"""
:param file_path: The path to the Excel file to be read.
:return: The contents of the Excel file as a DataFrame if successful, otherwise None.
"""
2024-11-18 10:59:21 +00:00
try:
return pd.read_excel(file_path)
except Exception as e:
print(f"Error reading the Excel file: {e}")
return None
def filter_studiegidsnummer(df):
"""
:param df: Input DataFrame that contains various columns including 'Studiegidsnummer'.
:return: DataFrame filtered to include only rows where the 'Studiegidsnummer' column contains 'GES'. Returns an empty DataFrame if 'Studiegidsnummer' column is not found.
"""
2024-11-18 10:59:21 +00:00
if 'Studiegidsnummer' not in df.columns:
print("Column 'studiegidsnummer' not found in the DataFrame.")
print("Available columns:", df.columns)
return pd.DataFrame() # Return an empty DataFrame
return df[df['Studiegidsnummer'].str.contains('GES', na=False)].copy()
def filter_opmerkingen(df):
"""
:param df: The input DataFrame containing various columns including 'Opmerkingen'
:return: A filtered DataFrame excluding rows where the 'Opmerkingen' column contains the string '24-25'. If the 'Opmerkingen' column is not found, returns an empty DataFrame and prints available columns.
"""
2024-11-18 10:59:21 +00:00
if 'Opmerkingen' not in df.columns:
print("Column 'Opmerkingen' not found in the DataFrame.")
print("Available columns:", df.columns)
return pd.DataFrame() # Return an empty DataFrame
return df[~df['Opmerkingen'].str.contains('24-25', na=False)].copy()
def create_message_column(df):
"""
:param df: A pandas DataFrame containing examination details.
:return: A pandas DataFrame with additional 'Message' and 'subject' columns
for communication with teaching staff regarding examination details.
"""
2024-11-18 10:59:21 +00:00
df.loc[:, 'Message'] = df.apply(lambda row: (
f"Beste docent,\n\n"
f"Ik ben de examengegevens aan het controleren van {row['Omschrijving']} {row['Studiegidsnummer']}. De huidige gegevens zijn als volgt:\n\n"
f"{row['Examenvorm']} examen voor zowel eerste als tweede zit, {row['Examenduur']} minuten, tussen {row['Beginuur voormiddag']} en {row['Einduur voormiddag']} of {row['Beginuur namiddag']} en {row['Einduur namiddag']}.\n\n"
f"Gelden dezelfde gegevens voor dit academiejaar of moeten er nog wijzigingen doorgevoerd worden? Alvast dank voor je reactie!"
), axis=1)
df.loc[:, 'subject'] = df.apply(lambda row: (
f"Examengegevens {row['Omschrijving']} {row['Studiegidsnummer']}"
), axis=1)
return df
def save_to_excel(df, output_file_path):
"""
:param df: The DataFrame to be saved to an Excel file.
:type df: pandas.DataFrame
:param output_file_path: The path where the Excel file will be saved.
:type output_file_path: str
:return: None
"""
2024-11-18 10:59:21 +00:00
try:
df.to_excel(output_file_path, index=False)
except Exception as e:
print(f"Error saving the Excel file: {e}")
def convert_time_format(time_str):
"""
:param time_str: A string representing the time to be converted.
:return: A string representing the time in 'HH:MM' format, or the original string if conversion fails.
"""
2024-11-18 10:59:21 +00:00
try:
return pd.to_datetime(time_str).strftime('%H:%M')
except Exception as e:
print(f"Error converting time format: {e}")
return time_str
def apply_time_format_conversion(df, columns):
"""
:param df: The DataFrame containing the columns to be formatted.
:type df: pandas.DataFrame
:param columns: A list of column names in the DataFrame to apply the time format conversion.
:type columns: list of str
:return: A DataFrame with the specified columns converted to the '%H:%M' format.
:rtype: pandas.DataFrame
"""
2024-11-18 10:59:21 +00:00
for column in columns:
df[column] = pd.to_datetime(df[column], format='%H:%M:%S', errors='coerce').dt.strftime('%H:%M')
return df
# Example usage within the main function
def main():
"""
Reads an Excel file, filters data based on specific criteria, converts time formats for specified columns,
creates a message column, and saves the filtered data to a new Excel file.
:return: None
"""
2024-11-18 10:59:21 +00:00
file_path = 'examengegevens2425.xlsx'
output_file_path = 'filtered_examengegevens2425.xlsx'
df = read_excel_file(file_path)
if df is not None:
filtered_df = filter_studiegidsnummer(df)
if not filtered_df.empty:
final_filtered_df = filter_opmerkingen(filtered_df)
# Convert time format for specified columns
time_columns = ['Beginuur voormiddag', 'Einduur voormiddag', 'Beginuur namiddag', 'Einduur namiddag']
final_filtered_df = apply_time_format_conversion(final_filtered_df, time_columns)
final_filtered_df = create_message_column(final_filtered_df)
save_to_excel(final_filtered_df, output_file_path)
if __name__ == "__main__":
main()